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A B S T R A C T   

Deep learning-based fault detection and diagnosis (FDD) methods have received considerable attention, and 
many methods based on convolutional neural network (CNN) have been applied to fault diagnosis for chemical 
processes. However, current fault diagnosis methods train and detect all faults using a single model and the same 
feature inputs, resulting in the neglect of correlations and difference between faults and inferior fault diagnosis 
performance. In this study, a novel fault diagnosis method named triage-based convolutional neural network 
(TrCNN) for fault diagnosis is proposed. Initially, the fault set is partitioned into distinct triage types. Subse
quently, distinct models are formulated and applied to their respective triage types in the sub networks layer, 
while a triage network is developed in the triage layer. Ultimately, the models from the triage layer and sub 
networks layer come together to constitute the triage fault diagnosis system. The proposed method can adap
tively select suitable models and features for different triage types, leading to improved diagnostic accuracy, 
especially for similar faults. When applied to the Tennessee Eastman (TE) chemical process the TrCNN dem
onstrates impressive performance, validating its effectiveness in fault diagnosis.   

1. Introduction 

Process safety and risk management have always been major chal
lenges faced by the process and manufacturing industries. To address 
this issue, digital systems have been applied to assist the process safety 
management throughout the entire lifecycle of process plants (Lee et al., 
2019). The Fourth Industrial Revolution (Industry 4.0) is driving the 
automation, digitalization, and intelligence reform of process opera
tions, control, and monitoring in the manufacturing industry (Espuña, 
2018; Sansana et al., 2021). Although distributed control systems (DCS) 
and advanced process control (APC) can effectively monitor and control 
chemical processes, the management of abnormal operating conditions 
still relies heavily on manual operations, and approximately 70% of 
production accidents are caused by human errors (Quiñones-Grueiro 

et al., 2019). Therefore, an intelligent abnormal operating conditions 
management system holds significant importance for the safety man
agement of chemical processes. 

Abnormal operating conditions refer to situations where the pro
cess deviates from the acceptable operating range. Because of the 
multivariable, strongly coupled, and nonlinear nature of chemical 
systems, the timely diagnosis and control of severe abnormal events 
present significant challenges (Hu et al., 2015). Arunthavanathan 
et al. proposed the application of fault detection and diagnosis (FDD) 
for managing abnormal operating conditions, which has become an 
indispensable method for ensuring safe and efficient production in 
chemical processes and holds significant theoretical and practical 
value in the chemical industry (Arunthavanathan et al., 2021; Bai and 
Zhao, 2023). Therefore, it is crucial to establish an intelligent, 
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efficient, and robust FDD method for process safety in the chemical 
industry. 

FDD methods can be categorized into three categories: model-based 
methods, knowledge-based methods, and data-driven methods. Model- 
based and knowledge-based methods have drawbacks such as strong 
reliance on experts, poor generalization capabilities, and difficulties in 
modeling. In contrast, data-driven methods rely less on expert knowl
edge and primarily depend on a large amount of measurable data 
available in the plant, making them simple and effective. With the 
continuous improvement of computing power and artificial intelligence, 
data-driven methods attracted more attention from researchers and 
became a popular research topic (Gordon et al., 2020). 

Data-driven methods include statistical learning methods and ma
chine learning methods. Among statistical learning methods, principal 
component analysis (PCA) has been widely applied due to its low 
computational cost and high fault detection rate (Jiang et al., 2016; Wise 
et al., 1990; Zhao et al., 2022). Additionally, partial least squares (PLS) 
(Kumar et al., 2003), Fisher discriminant analysis (FDA) (Chiang et al., 
2004) and others have also been applied (Feng et al., 2022; Wang et al., 
2021; Xiao et al., 2021). Machine learning methods include support 
vector machines (SVM) (Mahadevan and Shah, 2009; Yin and Hou, 
2016), k-nearest neighbors (KNN) (Wang et al., 2015), random forest 
(RF) (Liu and Ge, 2018), and artificial immune system (AIS) (Yao et al., 
2022). Fault diagnosis models based on Bayesian networks (BN) are 
interpretable models built on the foundation of Bayesian theory, and 
research progress has been made in this area (Amin et al., 2021a; Bi 
et al., 2022; Liu et al., 2022b). In the pursuit of ensuring process safety 
and risk assessments, there have been several improved approaches in 
this area. For example, Kaib et al. improved the kernel PCA-based al
gorithm to enhance its adaptability to nonlinear industrial processes 
through fractal dimension(Kaib et al., 2023). Ji et al. proposed a 
multimode process monitoring method based on DISS-PVC for the pro
duction loads in industrial operations are frequently adjusted(Ji et al., 
2022). Hybrid methods, which combine two or more techniques, have 
also been used for FDD(Amin et al., 2021b). Due to the advantages of 
different methods, hybrid methods can often overcome the limitations of 
an individual method and achieve better results. The diverse combina
tions of hybrid risk assessment methods are also worthy of in-depth 
exploration. For example, Li et al. proposed a new Copula-Bayesian 
based hybrid approach for risk modeling of the decommissioning 
operation of subsea pipelines(Li et al., 2022). Liu et al. proposed a strong 
relevant mechanism Bayesian network (SRMBN) for fault detection and 
diagnosis and applied to TE(Liu et al., 2022a). However, due to limited 
model capacity, their ability to extract features from high-dimensional 
data is constrained, leading to specific limitations. 

Compared to traditional machine learning methods, deep learning is 
more effective in feature extraction. It overcomes some limitations of 
shallow learning by obtaining hierarchical representations of raw data 
through multiple layers of nonlinear transformations. Deep learning 
algorithms in fault diagnosis include deep belief network (DBN) (Zhang 
and Zhao, 2017), convolutional neural network (CNN) (Wu and Zhao, 
2018), recurrent neural network (RNN) (Zhang et al., 2020), and 
transformer (Wei et al., 2022). Furthermore, there have been several 
improved approaches in this area. For example, Zhang et al. proposed an 
LSTM-LAE method which combining long short-term memory (LSTM) 
and ladder autoencoder (LAE) that effectively utilizes unlabeled data to 
enhance fault diagnosis performance (Zhang and Qiu, 2022b). Zheng 
and Zhao introduced an improved confidence-based self-training algo
rithm, which improves the application of self-supervised learning in 
semi-supervised fault diagnosis (Zheng and Zhao, 2022). Wu et al. 
presented a Process Topology Convolutional Network (PTCN) model for 
complex chemical process fault diagnosis, simplifying the model con
struction process and enhancing interpretability (Wu et al., 2023; Wu 
and Zhao, 2021). Moreover, Alauddin et al. presented a process 
dynamics-guided deep neural network (PDNN) model to enhance model 
generalization by rendering process dynamics and field expertise 

(Alauddin et al., 2023). Kopbayev et al. integrated CNN with 
Bi-directional long short-term memory (BiLSTM) to capture spatial then 
temporal features sequentially and applied it for gas leakage detection 
(Kopbayev et al., 2022). Furthermore, Zhang et al. designed a 
GRU-EDCNN model that combines the gated recurrent unit (GRU) with 
the enhanced deep convolutional neural network (EDCNN)(Zhang et al., 
2023). In addition, new models such as autoencoders (AE) and genera
tive adversarial network (GAN) have also been applied to fault diagnosis 
tasks, offering alternative approaches to address the challenges in this 
field (Bi and Zhao, 2021; Li et al., 2021). 

Among the algorithms in deep learning, CNNs have advantages in 
extracting local features from process data and are also easier to 
converge during training (Jiao et al., 2020). CNNs have been widely 
applied in fault diagnosis tasks. Wu and Zhao transformed historical 
data into 2D data matrices with corresponding labels to construct a deep 
convolutional neural network (DCNN) fault diagnosis model that 
simultaneously extracts spatial and temporal features (Wu and Zhao, 
2018). Deng et al. considered the influence of variable order on feature 
extraction and optimized the feature sequence and arrangement order 
using a genetic algorithm (Deng et al., 2021). Song and Jiang took into 
account the impact of convolutional kernel size and used a multi-scale 
CNN approach after transforming the data into 2D images for fault 
diagnosis (Song and Jiang, 2022). However, chemical process datasets 
consist of multiple variables, including temperature, pressure, liquid 
level, etc. These variables form a complex topological structure that 
cannot be easily represented using 2D graphs. Moreover, 2D convolu
tional kernels may lead to a decrease in feature extraction effectiveness 
along the time dimension, causing important information to be over
looked (Yu et al., 2020). In recent years, 1D-CNN has shown promising 
results in fault detection and diagnosis. Chen et al. extended the appli
cation of 1D-CNN based on one-dimensional process signals in complex 
multivariable process control and used reinforcement learning to search 
and optimize the structure of the neural network (Chen et al., 2022). Wu 
et al. developed an adversarial adaptive 1D-CNN that achieves high 
accuracy under different operating conditions (Wu et al., 2022). Wang 
et al. introduced batch normalization and improved second-order 
pooling into 1D-CNN, and used a multilayer perceptron for feature 
extraction and compression, which accelerated the convergence speed 
of the network (Wang et al., 2021). 

However, the current approach to fault diagnosis tends to treat the 
entire process as an end-to-end classification task, where fault diagnosis 
is viewed as a multi-class classification problem. Historical process data 
is used to build a fault diagnosis model for the entire chemical process, 
and all faults are diagnosed using the same features and model. While 
this approach reduces manual intervention, it also has some drawbacks. 
For chemical processes, adopting such a fault diagnosis approach dis
regards the inherent mechanistic characteristics of the chemical process. 
Although it is challenging to establish an analytical model-based fault 
diagnosis model for the entire chemical process, it is feasible to adopt 
mechanism modeling for specific process units within the chemical 
process. On the other hand, for complex chemical processes, a single 
model is inability to perform effective feature extraction. Modeling 
different process units separately can better extract local features. 
Moreover, based on current results, deep learning networks also have 
certain limitations. If the network structure is too simple, the feature 
extraction capability is insufficient, leading to underfitting. On the other 
hand, deepening the network to extract features can easily result in 
overfitting. Directly modeling the entire chemical process is prone to 
these situations, which can lead to a decrease in the diagnosis perfor
mance of the network. 

To solve the above problems, a novel fault diagnosis method named 
triage-based convolutional neural network (TrCNN) for fault diagnosis is 
proposed. The triage-based fault diagnosis method focuses on both the 
similarities and differences between faults. It is feasible to employ 
mechanism modeling for specific process units or to model different 
process units separately within the chemical process. Firstly, based on 
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prior knowledge and certain rules, similar types of faults are grouped 
into a triage type, which can be linked to hospital departments. The 
specific types of faults can be considered as the causes determined 
through diagnosis. During the diagnosis process, the triage type, to 
which the fault belongs is determined, and then the specific fault cate
gory is diagnosed using the corresponding model. Through the imple
mentation of triage-based approach, appropriate fault diagnosis models 
can be selectively applied to different units within the chemical process, 
effectively reducing the complexity of each task and enhancing the ac
curacy of diagnosis. This enables each model to individually build 
suitable feature models for the corresponding faults. Furthermore, for 
tasks of different stages and categories, feature selection using random 
forest is employed to eliminate weakly correlated features, enhance 
interpretability, and reduce unnecessary computation. Due to the 
excellent performance of 1D-CNN in extracting local features along the 
time dimension, it is chosen as the model structure in this paper. To 
better extract features along the time dimension, the data is transformed 
into a 2D time series matrix before conducting feature extraction along 
the time dimension. 

The organization of the rest of this paper is as follows: In Section 2, 
the structure of triage fault diagnosis, fundamental theories about CNN, 
and CNN components are described in detail. Section 3 introduces the 
structure of TrCNN. In Section 4, the proposed method is applied on the 
TE process, and some insights into the model structure and performance 
are discussed. Finally, Section 5 concludes the paper. 

2. Preliminaries 

2.1. Triage fault diagnosis 

In this study, a novel triage fault diagnosis (TFD) method for 
chemical processes is proposed. The faults are divided into different sets 
based on certain rules, with each set being assigned to a specific triage 
type. Each fault set can be trained and modeled using different strate
gies, including mechanism-based or data-driven approaches. During the 
modeling process, only the training dataset belonging to the respective 
triage type is utilized. Certainly, there needs to be a model responsible 
for global coordination among the triage types and determine which 

triage type the given data belongs to. This model is referred to as the 
triage network. The models responsible for diagnosing the specific fault 
type within each triage type are referred to as sub networks. By 
combining the triage network and sub networks for fault diagnosis, the 
location of the fault can be determined more quickly and accurately, 
enabling prompt actions to be taken to resolve the issue. 

Fig. 1 illustrates the typical structure of TFD. It consists of two layers 
of networks. The first layer, known as the triage layer, utilizes the triage 
network to initially identify which triage type the process variables 
belong to. The second layer comprises several independent sub net
works, with each sub network dedicated to refining the specific fault 
types within the triage types identified in the first layer, ultimately 
diagnosing the specific fault types. The triage layer classifies the input X 
into d triage types denoted as [S0,S1,…,Sd− 1], where i= 0 represents the 
normal operating condition. The second layer consists of d-1 sub net
works [SN1, SN2,…, SNd− 1] corresponding to the triage types S1 to Sd− 1. 
Each sub network SNi identifies its sub-state based on the input XSi . As 
the normal operating state has only one category, it is directly identified 
by the triage network without requiring the sub networks for diagnosis. 

2.2. Convolutional neural network 

CNN is a deep learning model that was initially proposed in the late 
1980 s (Cun et al., 1989). Its core ideas include local connectivity, 
weight sharing, pooling, and the use of multiple layers (LeCun et al., 
2015). 1D-CNN is a variant of CNNs that is primarily used for processing 
one-dimensional sequence data such as text and audio data. The basic 
structure of a 1D-CNN is similar to traditional CNNs and includes con
volutional layers, pooling layers, fully connected layers, and activation 
functions. The key difference between 1D-CNN and traditional CNN lies 
in the operation of the convolutional kernel. In 1D-CNN, the convolu
tional kernel slides in only one direction, typically along the time axis. 
This allows the 1D-CNN to extract temporal features from the data and 
share the same convolutional kernel across different positions. 

For multivariate time series data, the order of variables does not 
necessarily follow a specific sequence. Therefore, it is only possible to 
assume local pattern invariance along the time dimension, unlike images 
that have both horizontal and vertical dimensions (Zhang and Qiu, 
2022a). Consequently, using 1D-CNN for processing multivariate time 
series data is appropriate. 

2.2.1. Convolutional layer 
The convolutional layer, also known as the feature extraction layer, 

is used to process multivariate time series data. In 1D-CNN, the data is 
stacked as a two-dimensional matrix, where each vector represents the 
time series values of a specific process variable. Each variable is treated 
as a separate channel, and convolution is performed along the time 
dimension. The output feature maps are obtained by applying con
volutional operations to the input features. Fig. 2 illustrates the con
volutional computation process of 1D-CNN on a time series. When the 
input data is 4 × 4, 1D-CNN stacks the four variables and performs 

Fig. 1. The triage-based fault diagnosis architecture.  

Fig. 2. Convolutional layer.  
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feature extraction by sliding the convolutional kernel along the time 
dimension. In the figure, the convolutional kernel has a size of 2 and a 
stride of 1. 

After the convolutional operation, it is common to include a bias 
term and apply an activation function to introduce non-linearity in the 
network. Activation functions that are commonly used include the lo
gistic function(sigmoid), hyperbolic tangent function(tanh), and recti
fied linear unit (ReLU). 

f (x) = (1 + ex)
− 1 (1)  

f (x) = tanh(x) (2)  

f (x) = max(0, x) (3)  

2.2.2. Pooling layer 
The pooling layer is a type of layer that performs down sampling on 

the data. It is used to reduce the dimensionality of the feature maps 
obtained from the convolutional layer and retain important information, 
thus reducing the complexity of the model and improving its general
ization ability. In the pooling layer, commonly used pooling operations 

include max pooling and average pooling, as shown in Fig. 3. 

2.2.3. Fully connected layer 
After multiple layers of convolution and pooling operations, the 

features have been extracted. The goal of the fully connected layer is to 
classify the extracted features. All the feature maps outputted from the 
previous layer are flattened into a one-dimensional vector and then fed 
into the fully connected layer. The fully connected layer outputs a set of 
scalar values. 

3. System structure of triage fault diagnosis 

In chemical processes, faults occur when process variables deviate 
from their normal states, and the underlying causes may be related to 
only a few variables. The data of different deviations can be used for 
diagnosing fault types. However, faults in chemical processes often 
exhibit similarities. For example, the fault behavior of a step change in 
reactor cooling water inlet temperature and a random variation in 
reactor cooling water inlet temperature may have significant similar
ities. In the process of fault diagnosis, it is not always necessary to 
determine the specific fault type that occurred. It can be sufficient to 
identify two or several highly probable faults. Additionally, due to the 
high similarity between some faults, it may be difficult to directly 
differentiate all fault types using a single model. Therefore, it is possible 
to first diagnose the range to which a fault belongs, known as the triage 
type in this paper, and then use a more refined model to determine the 
specific fault type. 

The fault diagnosis model for the chemical process based on the 
triage-based CNN extracts features from a period of process data and 
diagnoses the system state. The model takes a 2D vector of size m × n as 
input, where m is the number of features and n is the length of the time 
series. The model outputs the triage type (including normal operation) 
and the specific fault type. 

The framework of the TFD is shown in Fig. 4. The method is mainly 
divided into two parts: offline process fault diagnosis and online process 
fault diagnosis. The details of the algorithm are described in the 
following sections. 

Algorithm 1. Fault diagnosis based on triage-based convolutional 
neural network. 

Fig. 3. Pooling layer.  

Fig. 4. The framework of triage-based fault diagnosis method.  
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In this algorithm, the fault detection rate (FDR) and false positive 
rate (FPR) are commonly used to evaluate the fault diagnosis perfor
mance. They are calculated using Eq. 6 and Eq. 7 respectively, where TP, 
FP, TN, and FN are determined based on the confusion matrix, as 
detailed in Table. 1. 

FDR =
TP

TP + FN
(6)  

FPR =
FP

FP + TN
(7)  

4. Case study on tennessee eastman process 

4.1. TE data and preprocessing 

The TE process is a computer simulation process based on real 
chemical process data, designed by Downs and Vogel (Downs and Vogel, 
1993). To enhance the applicability of this model, Bathelt et al. proposed 
a modified version of the TE process (see Fig. 5) and expanded the 
variables (Bathelt et al., 2015). The modified version can be obtained 
from http://depts.washington.edu/control/LARRY/TE/download.html. 
The benchmark TE process was utilized to verify the effectiveness of the 
proposed TrCNN model in this study. 
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In the simulation, a total of 53 variables were considered, comprising 12 
process manipulation variables, 22 continuous process measurements, and 
19 composition analysis measurements. Notably, the compressor recycle 
valve (5), stripper flow valve (9), and reactor agitator rate (12) maintained 
constant values. Consequently, the dimension of the process data utilized in 
subsequent model training was reduced to 50. For the evaluation of model 
performance, 15 fault types represented by IDV1 - IDV15, along with the 
normal state IDV0, were selected. Faults 16–20 were excluded from the 
study due to uncertain fault types. The sampling period was set at 3 min, 
equivalent to 20 points per hour. During simulations of normal operating 
conditions, the system’s initial conditions were altered for each simulation. 
Ten simulations were conducted under each condition, each lasting for 
50 h, resulting in a total of 10,000 data samples under normal conditions. 
For training purposes, 80% (8000) of the normal condition data were 
randomly selected as the training set, while the remaining 20% (2000) were 
reserved as the test set. In simulating fault conditions, 10 simulations were 
performed under different initial conditions. It is noteworthy that we 
initiated simulations with 10 h of normal state to ensure system stability. 
Subsequently, fault disturbances were introduced, and simulations were 
extended for an additional 40 h to obtain data under fault conditions. 
However, for fault 6 (IDV6), the simulation was terminated after 7 h due to 
the system’s reaction pressure exceeding the limit, triggering a shutdown. 
Similarly, for each fault, 8 simulated fault samples were randomly chosen 
(from a pool of 90,720) as the training set, and 2 simulated fault samples 
were designated as the test set. A detailed overview of the simulation in
formation is presented in Table 2. 

4.2. Implementation details 

Variable selection is closely related to the fault diagnosis model 
performance. The complete dataset comprises 50 features. However, not 
all features are effective, given that an excess of variables can lead to a 
waste of computational resources, particularly in the context of deep 
learning. Whether a variable is valuable or noise is determined by the 
model performance that if it is improved or on the contrary. RF, a 
common embedded feature selection method, is relatively easy to un
derstand and implement(Chen et al., 2020; Kari et al., 2023). For 
TrCNN, the identification of key variables relevant to different faults 
varies. Utilizing the feature importance ranking computed by RF, 35 
features were retained for both the triage layer model and the sub net
works layer model. 

4.2.1. Triage layer 
In the event of a malfunction, timely and effective diagnosis is crucial 

for identifying the root cause of the problem and implementing appro
priate measures for resolution. The triage layer is capable of quickly 
distinguishing whether the current operating condition is abnormal and 
can provide possible causes for the malfunction. Additionally, since the 
subnetwork layer relies on the diagnostic effectiveness of the triage layer 
model, the triage layer is also crucial for the overall diagnostic perfor
mance. In this study, the performance of the triage layer was investi
gated under different triage approaches to present enhanced solutions 
for chemical process fault diagnosis. 

Two triage approaches were considered: based on the occurrence 
location of faults and based on the fault types. Triage based on location 
of faults categorizes faults occurring at the same location into one 
category. The TE process can be categorized into four categories based 
on the location of the fault: reactor feed, reactor, condenser, and stream 
4. Furthermore, the faults can be classified into five categories based on 
their types: material temperature faults, feed composition faults, valve 
faults, cooling water inlet temperature faults, and other faults. The 

Table1 
Confusion Matrix.  

Confusion Matrix Prediction  
Positive Negative 

Real Positive TP FN 
Negative FP TN  

Fig. 5. Revised TE process (Bathelt et al., 2015).  
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specific triage approaches are presented in Table 3. Additionally, 
regardless of the triage approach employed, the normal operating con
dition is treated as a separate triage category to facilitate the timely 
detection of abnormal operating conditions at the triage layer. 

When diagnosing in the triage layer, it is not necessary to accurately 
determine the specific type of the fault. It is only necessary to diagnose 
the triage category to which it belongs. Therefore, overly complex 
models can lead to overfitting and a decrease in the actual diagnostic 
performance. To achieve maximum computational efficiency in training 
and classification, several simple 1D-CNN network models were devel
oped and tested, as shown in Table 4. To determine the optimal triage 
layer, 25% of the training set were randomly selected as the validation 
set, while the remaining 75% were reserved as the training set. The 
validation set was used to assess the model’s performance and select an 
appropriate triage model and approach. The network model with the 
most outstanding diagnostic performance on validation set from Table 4 
was selected as the architecture for the triage task. Taking Model 1 as an 
example, the structure of the models in Table 4 is explained. In this 
instance, the model comprises three layers, including one 1D convolu
tional layer, one max pooling layer, and one fully connected layer. The 
convolutional layer has a kernel size of 5, a stride of 1, and a padding of 2 
to ensure that the size of the output feature map remains the same as the 
input data during convolution. There are 32 convolutional kernels. The 
pooling layer utilized max pooling has a kernel size of 2 and a stride of 2. 
The input to the fully connected layer must be a one-dimensional vector, 
so the Flatten operation is employed to reshape the 2D array into 320 
(10 ×32). The output of the fully connected layer is obtained using 
softmax to acquire the final prediction. The experimental optimizer is 
Adam, and the activation function is ReLU. 

4.2.2. Sub networks layer 
Different tasks require different neural network architectures. In the 

case of the sub network layer, it is often necessary to use multiple neural 
networks to diagnose different types of faults separately, to accurately 
identify the specific fault. These sub networks can have different 
network structures, with each sub network trained and adjusted 

specifically for a particular type of fault, to better capture the features of 
these faults. Designing an optimal network structure without scientific 
guidance can be a complex task. 

To identify suitable models, the Particle Swarm Optimization (PSO) 
algorithm was employed to explore appropriate network structures and 
automatically optimize the training process and parameters. Through 
this optimization, suitable sub networks for each triage type were 
determined. In this study, different choices for the convolutional kernel 
size were considered, including 3 × 1, 5 × 1, and 7 × 1. The number of 
convolutional layers ranged from 2 to 6, and the pooling layer utilized 
max pooling with a constant kernel size of 2 and a stride of 2. The 
learning rate was selected within the range of 10− 2 to 10− 5. 

4.3. Results and discussion 

The training and testing processes were conducted on a server with a 
3090 GPU. The batch size for the training set was set to 128, meaning 
that the samples were input into the model in small batches. During each 
iteration, 128 samples were used for forward and backward propaga
tion. The training was performed for 50 epochs, meaning that the 
training dataset was iterated 50 times for model training. To prevent 
overfitting, an early stopping strategy was employed. 

4.3.1. Triage layer diagnosis result 
Table 5 presents the average FDR of validation set and training time 

for different triage approaches (as shown in Table 3) and model struc
tures (as shown in Table 4). Among the triage approaches, using fault 
position to determine the triage category and training with Model 1 
achieves the highest average FDR (97.5%) and requires shorter training 
time. In the subsequent discussion, the triage layer adopts the triage 
method based on fault position and Model 1 is selected as the optimal 
architecture. 

After determining the triage approach and network structures 
including hyperparameters of triage layer, all training set including 
validation set were used to train the model and the test set was used to 
verify the model performance. Fig. 6 illustrates the accuracy curves 
during the training and testing phases of triage network. For the testing 
dataset containing 24,680 data points, the triage layer successfully 
classifies them into five different triage types, including the normal 

Table 2 
Simulation Time and Sample Size of Each Status.  

Status Training Set 
simulation time/h 

Testing Set 
simulation time/h 

Training 
Set 
sample 
size 

Testing 
Set 
sample 
size 

Normal 50 × 10 × 0.8 50 × 10 × 0.2 8000 2000 
IDV 01- 

05 
07-15 

40 × 10 × 14 × 0.8 40 × 10 × 14 × 0.2 89600 22400 

IDV 06 7 × 10 × 0.8 7 × 10 × 0.2 1120 280 
Total 4936 1234 98720 24680  

Table 3 
Triage Approaches of the TE Process.  

Triage 
approach 

Faults type Triage type 

Fault location Fault 3, Fault 6, Fault 9 Feed of reactor 
Fault 4, Fault 11, Fault 13, Fault 
14 

Reactor 

Fault 5, Fault 12, Fault 15 Condenser 
Fault 1, Fault 2, Fault 7, Fault 8, 
Fault 10 

Stream 4 

Fault type Fault 3, Fault 9, Fault 10 Material temperature faults 
Fault 1, Fault 2, Fault 8 Feed composition faults 
Fault 14, Fault 15 Valve faults 
Fault 4, Fault 5, Fault 11, Fault 
12 

Cooling water inlet 
temperature faults 

Fault 6, Fault 7, Fault 13 Other faults  

Table 4 
Model Candidates for Fault Diagnosis of the TE Process.  

Model Architecture 

Model 1 Conv(32)-Pool-FC(16) 
Model 2 Conv(32)-Pool-Conv(64)-Pool-FC(16) 
Model 3 Conv(32)-Conv(64)-Pool-FC(16) 
Model 4 Conv(32)-Conv(64)-Pool-Conv(64)-Pool-FC(16) 
Model 5 Conv(64)-Pool-FC(128)-FC(16) 
Model 6 Conv(128)-Pool-FC(16)  

Table 5 
The Training Time and the Average FDR of Validation Set.  

Triage approach Model Training time for one 
epoch (s) 

Validation set average 
FDR (%) 

Fault location Model1 2.27 97.5 
Model2 2.82 94.7 
Model3 3.00 96.7 
Model4 3.52 95.7 
Model5 2.70 97.0 
Model6 2.31 97.1 

Fault Type Model1 2.09 92.1 
Model2 2.74 91.0 
Model3 2.70 90.6 
Model4 3.29 90.0 
Model5 2.41 91.2 
Model6 2.17 91.2  
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condition. The confusion matrix of the triage layer’s diagnostic results is 
shown in Fig. 7, where the numbers on the main diagonal represent the 
correctly identified samples. It can be observed that the triage layer 
achieves overall good diagnostic performance when based on fault po
sition for triaging. 

4.3.2. Sub networks diagnosis result 
Triage based on fault position results in five triage types: reactor 

feed, reactor, condenser, stream 4, and normal condition. Since the 
normal condition is already diagnosed in the triage layer and does not 
require further diagnosis, there are four sub networks dedicated to 
diagnosing faults. Each sub network focuses on diagnosing specific types 
of faults. 

For different triage categories, the sub network layers identify the 
top 5 variables with the highest contribution through the random forest 
algorithm, as shown in Table 6. It can be observed that different sub 
networks within the layer retain variables that are correlated with the 
respective triage categories when diagnosing specific faults. For 
instance, in diagnosing faults belong to feed of reactor, the variables 
with the highest impact include flow indicators at the feed of reactor and 
indicators of reactor condenser water. 

The diagnostic results of each model are presented in Table 7, indi
cating high diagnostic performance for specific faults within their 
respective triage types, where the network structure optimised by the 
particle swarm algorithm for different shunt types in the sub-network 
layer is shown in Table S1. To further analyze the diagnostic results, 
the confusion matrices for different sub networks are shown in Fig. 8. 
The matrices display the diagnostic outcomes for various faults within 
different triage types. It can be observed that the diagnostic rates for 
faults 5, 12, and 15 in triage type 3 are slightly lower compared to other 
types. This may be attributed to the fact that these faults all occur in the 
condenser location and have similar fault patterns. Faults 5 and 12 
involve variations in the temperature of condenser inlet water, while 
fault 15 is related to the sticking of the cooling water valve, resulting in a 
similar effect of temperature change. Overall, it can be concluded that 
the different models perform well in diagnosing specific faults within 
their corresponding triage types, indicating the effectiveness of the 
triage approach. 

To visually illustrate the recognition performance of various models 
in the sub network layer for specific fault states within their respective 
triage types, the t-distributed stochastic neighbor embedding (t-SNE) 
method was utilized. The t-SNE algorithm effectively reduces high- 
dimensional data from the intermediate layers of the network into 
two-dimensional or three-dimensional space, facilitating the visualiza
tion of the output from the intermediate layers of the model. 

t-SNE graphs were generated for the features extracted from the sub 

Fig. 7. Triage layer confusion matrix for the testing set.  

Fig. 6. Training and testing accuracy with the epoch of triage network.  

Table 6 
Top 5 variables of different triage types.  

Triage type Top 5 variables with the largest random forest score 

Feed of 
reactor 

XMEAS (21) Reactor cooling outlet temp. XMEAS (1) A feed rate 
XMV (3) Valve pos. A feed XMV (11) Valve pos. condenser cooling 
water XMEAS (22) Separator cooling outlet temp. 

Reactor XMV (11) Valve pos. reactor cooling water XMEAS (21) Reactor 
cooling outlet temp. XMEAS (9) Reactor temp. XMEAS (24) Reactor 
feed B% XMEAS (18) Purge temp. 

Condenser XMEAS (18) Purge temp. XMV (11) Valve pos. condenser cooling 
water XMEAS (11) Separator temp. XMV (2) Valve pos. E feed XMV 
(8) Valve purge pos. stripper steam 

Stream 4 XMV (4) Valve pos. A&C feed (stream 4), XMV (3) Valve pos. A feed 
(stream 1) XMEAS (34) Purge gas F% XMEAS (28) Reactor feed F% 
XMEAS (24) Reactor Feed B%  

Table 7 
Diagnosis Result of the Sub Networks.  

Triage type Fault type Testing average 
FDR (%) 

Feed of 
reactor 

Fault3 D feed temperature increases 97.2 
Fault6 A feed loss 99.3 
Fault9 D feed temperature changes randomly 96.7 

Reactor Fault4 reactor cooling inlet temperature 
increases 

99.9 

Fault11 reactor cooling water inlet 
temperature changes randomly 

99.4 

Fault13 reaction kinetics drift slowly 100 
Fault14 reactor cooling water valve sticking 99.8 

Condenser Fault5 condenser cooling inlet temperature 
increases 

94.9 

Fault12 condenser cooling inlet temperature 
changes randomly 

97.1 

Fault15 condenser cooling water valve 
sticking 

97.5 

Stream 4 Fault1 A/C feed ratio decreases (A&C feed) 99.8 
Fault2 B composition increases (A&C feed) 99.4 
Fault7 C feed header pressure loss-reduced 
availability 

100 

Fault8 A, B, and C feed composition changes 
randomly 

98.7 

Fault10 C feed temperature changes 
randomly 

99.3  
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network layer models employing convolutional neural networks. For 
each triage type, a random selection of 1000 samples from the dataset 
were visualized. As shown in Fig. 9, it can be observed that after the 
extraction by 1D-CNN, there is a clear clustering trend, and the clus
tering results can also distinguish different types of faults. Most of the 
fault types can be well classified, with only a few overlaps. This indicates 
that the feature extraction through the convolutional layers is effective 
and can be used successfully to differentiate specific fault types. 

4.3.3. Triage-based Diagnosis Result 
After the structures of the triage layer and sub networks layer were 

determined, the overall performance of the fault diagnosis based on the 
triage-based model was tested. The diagnostic results are shown in 
Table 8. As shown in the table, the average FDR for the training set is 
97.69%, with a corresponding FPR of 0.16%. For the testing set, the 
average FDR and FPR are 96.78% and 0.22% respectively. The results 
indicate that, except for fault 5 (step change in condenser cooling water 
inlet temperature) and fault 9 (random variation in temperature of 
stream 2 component D), the diagnosis rates of our method are all above 
96%, with fault 15 having a slightly higher FPR but still below 3%. It can 
be observed that the performance of the training set and testing set data 
is close, indicating that the model does not exhibit significant over
fitting. Overall, the TrCNN model is capable of accurately identifying 
these types of faults. 

To further explore the diagnostic results, the confusion matrix for the 
overall diagnosis results was plotted as shown in Fig. 10. The confusion 
matrix reveals that the primary fault prone to misdiagnosis is fault 9 
(associated with triage type 1), often incorrectly diagnosed as fault 15 

(associated with triage type 3). Fault 9 and fault 15 belong to different 
triage types, indicating an error during the triage stage where fault 9 of 
triage type 1 is misdiagnosed as fault 15 of triage type 3. To enhance the 
diagnostic accuracy of fault 9 in the future, optimization of the triage 
layer can be considered. 

Fig. 11 shows the diagnostic probabilities of the model for the first 
3 h after the occurrence of fault 1. In the early stages of fault occurrence, 
fault 1 is prone to be misdiagnosed as fault 15 and fault 9. However, 
after 15 min, it can be accurately identified. Furthermore, the diagnostic 
rates of all fault types in the early stages of fault occurrence were sta
tistically analyzed and are presented in Table 9. The results show that 
although the average FDR in the first hour only reaches 54%, there is 
significant improvement between 1 to 2 h, with an FDR exceeding 90%. 
This indicates that the model provides timely diagnosis. In future 
research, it is necessary to focus on ultra-early warning for faults, 
particularly in improving the fault detection effectiveness within the 
first hour. 

To enhance the understanding of the feature learning process in the 
triage-based 1D-CNN model, the t-SNE method was utilized to visualize 
the outputs of each layer in the network. Fig. 12 illustrates the pro
gressive changes of 5000 randomly selected test samples in the triage 
network. All different categories of raw data are mixed, making it 
difficult to distinguish. However, after being extracted by the model, the 
samples gradually cluster in the t-SNE plot, showing clear clustering 
effects. However, after feature extraction by the model, the samples 
gradually cluster in the t-SNE plots, demonstrating evident clustering 
effects. 

For the sub networks layer, Fig. 13 presents the t-SNE visualization of 

Fig. 8. Sub networks layer confusion matrix for the testing set.  
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each layer for the model corresponding to sub network layer triage type 
1. It can be observed that in addition to faults 3, 6, and 9, which belong 
to triage type 1, a few faults from other categories are misdiagnosed as 
triage type 1. Fault 6 can be distinguished well from the beginning, 
while faults 3 and 9 are mixed and challenging to differentiate. As the 
model extracts features, the two categories gradually exhibit clustering 
tendencies and can eventually be effectively separated. 

The diagnostic performance of DCNN, attention-BiLSTM, 1D CNN, 
TrCNN* (TrCNN without RF-based feature selection method) and 
TrCNN are presented in Fig. 14, while the specific results are shown in 
Table S2 and S3. The triage-based methods produced better FDR and 
FPR than DCNN, attention-BiLSTM, 1D CNN. The average FDR and FPR 
of TrCNN* improved after employing the RF-based feature selection 
method. This is because the triage network categorizes faults into mul
tiple distinct types, and each type focuses on different key features. After 
feature selection, it retains the crucial features for each category, 
thereby assisting our network in achieving more precise diagnostics. In 
detail, our triage-based models performed much better for the diagnosis 
of faults 9 and 15. The FDR of fault 9 was 80.63% for TrCNN* and 
81.63% for TrCNN, compared with only 61.38% for attention-BiLSTM 
and even 47.88% for attention-BiLSTM. The triage-based method 

Fig. 9. Different models of sub networks visualization using t-SNE.  

Table 8 
Diagnosis Result of the TE process.  

Type of fault Fault diagnosis rate (FDR/%) False positive rate (FPR/%) 

Training Set Test Set Training Set Test Set 

Fault 1 99.83 99.63 0.00 0.00 
Fault 2 99.42 99.13 0.02 0.02 
Fault 3 99.55 97.19 0.01 0.23 
Fault 4 100.00 99.94 0.00 0.00 
Fault 5 95.47 91.81 0.55 0.26 
Fault 6 99.55 98.93 0.00 0.00 
Fault 7 100.00 100.00 0.00 0.00 
Fault 8 98.47 97.13 0.03 0.01 
Fault 9 87.53 81.63 0.14 0.33 
Fault 10 96.73 97.25 0.01 0.00 
Fault 11 99.42 98.88 0.00 0.00 
Fault 12 98.53 97.13 0.08 0.10 
Fault 13 96.50 96.88 0.00 0.00 
Fault 14 99.67 99.25 0.00 0.00 
Fault 15 94.72 96.94 4.76 2.44 
Average 97.69 96.78 0.37 0.23  
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proves to be effective in diagnosing similar faults and is well-suited to 
serve as a fundamental framework for FDD. In addition, the FDRs of 
these five methods at different time periods after introducing faults are 
presented in Table S4. All methods exhibited low diagnosis rates in the 
initial hour after the occurrence of faults. Nevertheless, whether in the 
early stages of fault occurrence or in a certain period after the fault, 

TrCNN consistently performed well. 
The TrCNN first determines the triage type through the triage 

network and then identifies the specific fault type through the sub- 
networks. However, in chemical production processes, unknown types 
of faults which not included in the historical process data may occur. In 
the case of unknown faults, determining the specific fault type poses a 

Fig. 10. Confusion matrix for testing set.  

Fig. 11. Visualization of categorical probabilities in triage-based fault diagnosis after fault 1 has been introduced for 60, 120, and 180 min, respectively.  
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challenge. However, the triage network allows it to obtain the triage 
type. Specifically, when using the location of the fault occurrence as the 
triage category, the triage network can help identify the location of 
unknown faults, assisting personnel in narrowing down the trouble
shooting scope. To evaluate the diagnosis performance of the proposed 
method for unknown fault types, experiments were conducted 

separately for each of the selected faults: Fault 3 (Triage type 1), Fault 11 
(Triage type 2), Fault 15 (Triage type 3), and Fault 2 (Triage type 4). 
During each experiment, only the other 14 known faults were consid
ered, and the unknown fault type was introduced only during testing. 
The average FDR for each fault occurs when treated as an unknown fault 
is presented in the Table 10. It is evident that the proposed method can 
achieve reasonable diagnostic results even for unknown fault types, 
which is meaningful for the practical application of chemical process 
fault diagnosis in real production scenarios. 

Fig. 12. Triage layer visualization using t-SNE.  

Table 9 
The average FDR during different time period after the fault introduction.  

Time period 0–1 h 1–2 h 2–3 h 

Average FDR (%) 54.00 94.67 100.00  
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5. Conclusions 

This study proposes a Triage-based 1D-CNN model for fault diag
nosis. The model utilizes a triage layer to determine the fault’s triage 
type for timely warning, and sub networks layer to identify the specific 
fault type for accurate diagnosis. The 1D-CNN is employed to extract 
temporal features from the chemical process data. For complex chemical 
engineering processes, existing methods of fault diagnosis which model 
all faults with the same network and identical features are limited in 
diagnostic capability due to the limitations of model capacity. From a 
risk engineering perspective, triage-based fault diagnosis is better suited 
for complex chemical engineering processes. 

Experimental results demonstrate the effectiveness and applicability 
of the TrCNN in the TE process. The triage layer achieves a fault 
detection rate (FDR) of 97%, enabling timely and accurate warnings. On 

average, the overall FDR for the 15 known fault types reaches 96.78%. 
The model also exhibits good performance in early fault diagnosis. 
Additionally, the t-SNE visualization technique is utilized to visualize 
the hierarchical feature learning process of the model, and most of the 
data clusters are clear and accurate. The TrCNN offers advantages such 
as high fault diagnosis accuracy, reliability, and timely warnings, 
making it promising for industrial applications. Compared to other deep 
learning models such as LSTM and CNN algorithms, this method ach
ieves superior diagnostic accuracy and false alarm rates while providing 
timely fault warnings. To ensure process safety, methods need to detect 
faults earlier and with greater accuracy. TrCNN can achieve earlier and 
more precise fault diagnosis, making it well-suited for complex chemical 
processes. This capability aids operators in promptly addressing excep
tions to prevent accidents and effectively managing the risks associated 
with complex processes. With this method we can build a more efficient 

Fig. 13. Triage category 1 visualization using t-SNE.  

Q. Tao et al.                                                                                                                                                                                                                                     



Process Safety and Environmental Protection 183 (2024) 1102–1116

1115

and practical risk management system which has a substantial effect on 
process safety. 

It should be noted that the fault diagnosis models presented in this 
study are data-driven. Future work can be carried out on exploring 
different models tailored to specific fault types based on application 
requirements. The method can be used as a general framework for fault 
diagnosis of various tasks in risk assessment. 
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